Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 30(1): 14-26, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38214892

RESUMO

In this study, a novel application of synchrotron X-ray nanotomography based on high-resolution full-field transmission X-ray microscopy for characterizing the structure and morphology of micrometric hollow polymeric fibers is presented. By employing postimage analysis using an open-source software such as Tomviz and ImageJ, various key parameters in fiber morphology, including diameter, wall thickness, wall thickness distribution, pore size, porosity, and surface roughness, were assessed. Electrospun polycaprolactone fibers with micrometric diameters and submicrometric features with induced porosity via gas dissolution foaming were used to this aim. The acquired synchrotron X-ray nanotomography data were analyzed using two approaches: 3D tomographic reconstruction and 2D radiographic projection-based analysis. The results of the combination of both approaches demonstrate unique capabilities of this technique, not achievable by other available techniques, allowing for a full characterization of the internal and external morphology and structure of the fibers as well as to obtain valuable qualitative insights into the overall fiber structure.

2.
Autophagy ; : 1-21, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37908116

RESUMO

During starvation in the yeast Saccharomyces cerevisiae vacuolar vesicles fuse and lipid droplets (LDs) can become internalized into the vacuole in an autophagic process named lipophagy. There is a lack of tools to quantitatively assess starvation-induced vacuole fusion and lipophagy in intact cells with high resolution and throughput. Here, we combine soft X-ray tomography (SXT) with fluorescence microscopy and use a deep-learning computational approach to visualize and quantify these processes in yeast. We focus on yeast homologs of mammalian NPC1 (NPC intracellular cholesterol transporter 1; Ncr1 in yeast) and NPC2 proteins, whose dysfunction leads to Niemann Pick type C (NPC) disease in humans. We developed a convolutional neural network (CNN) model which classifies fully fused versus partially fused vacuoles based on fluorescence images of stained cells. This CNN, named Deep Yeast Fusion Network (DYFNet), revealed that cells lacking Ncr1 (ncr1∆ cells) or Npc2 (npc2∆ cells) have a reduced capacity for vacuole fusion. Using a second CNN model, we implemented a pipeline named LipoSeg to perform automated instance segmentation of LDs and vacuoles from high-resolution reconstructions of X-ray tomograms. From that, we obtained 3D renderings of LDs inside and outside of the vacuole in a fully automated manner and additionally measured droplet volume, number, and distribution. We find that ncr1∆ and npc2∆ cells could ingest LDs into vacuoles normally but showed compromised degradation of LDs and accumulation of lipid vesicles inside vacuoles. Our new method is versatile and allows for analysis of vacuole fusion, droplet size and lipophagy in intact cells.Abbreviations: BODIPY493/503: 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-Indacene; BPS: bathophenanthrolinedisulfonic acid disodium salt hydrate; CNN: convolutional neural network; DHE; dehydroergosterol; npc2∆, yeast deficient in Npc2; DSC, Dice similarity coefficient; EM, electron microscopy; EVs, extracellular vesicles; FIB-SEM, focused ion beam milling-scanning electron microscopy; FM 4-64, N-(3-triethylammoniumpropyl)-4-(6-[4-{diethylamino} phenyl] hexatrienyl)-pyridinium dibromide; LDs, lipid droplets; Ncr1, yeast homolog of human NPC1 protein; ncr1∆, yeast deficient in Ncr1; NPC, Niemann Pick type C; NPC2, Niemann Pick type C homolog; OD600, optical density at 600 nm; ReLU, rectifier linear unit; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient; SXT, soft X-ray tomography; UV, ultraviolet; YPD, yeast extract peptone dextrose.

3.
Front Cell Dev Biol ; 11: 1144936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020900

RESUMO

Niemann Pick type C1 and C2 (NPC1 and NPC2) are two sterol-binding proteins which, together, orchestrate cholesterol transport through late endosomes and lysosomes (LE/LYSs). NPC2 can facilitate sterol exchange between model membranes severalfold, but how this is connected to its function in cells is poorly understood. Using fluorescent analogs of cholesterol and quantitative fluorescence microscopy, we have recently measured the transport kinetics of sterol between plasma membrane (PM), recycling endosomes (REs) and LE/LYSs in control and NPC2 deficient fibroblasts. Here, we use kinetic modeling of this data to determine rate constants for sterol transport between intracellular compartments. Our model predicts that sterol is trapped in intraluminal vesicles (ILVs) of LE/LYSs in the absence of NPC2, causing delayed sterol export from LE/LYSs in NPC2 deficient fibroblasts. Using soft X-ray tomography, we confirm, that LE/LYSs of NPC2 deficient cells but not of control cells contain enlarged, carbon-rich intraluminal vesicular structures, supporting our model prediction of lipid accumulation in ILVs. By including sterol export via exocytosis of ILVs as exosomes and by release of vesicles-ectosomes-from the PM, we can reconcile measured sterol efflux kinetics and show that both pathways can be reciprocally regulated by the intraluminal sterol transfer activity of NPC2 inside LE/LYSs. Our results thereby connect the in vitro function of NPC2 as sterol transfer protein between membranes with its in vivo function.

5.
Proc Natl Acad Sci U S A ; 120(24): e2209938120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276395

RESUMO

Cryo-soft X-ray tomography (cryo-SXT) is a powerful method to investigate the ultrastructure of cells, offering resolution in the tens of nanometer range and strong contrast for membranous structures without requiring labeling or chemical fixation. The short acquisition time and the relatively large field of view leads to fast acquisition of large amounts of tomographic image data. Segmentation of these data into accessible features is a necessary step in gaining biologically relevant information from cryo-soft X-ray tomograms. However, manual image segmentation still requires several orders of magnitude more time than data acquisition. To address this challenge, we have here developed an end-to-end automated 3D segmentation pipeline based on semisupervised deep learning. Our approach is suitable for high-throughput analysis of large amounts of tomographic data, while being robust when faced with limited manual annotations and variations in the tomographic conditions. We validate our approach by extracting three-dimensional information on cellular ultrastructure and by quantifying nanoscopic morphological parameters of filopodia in mammalian cells.


Assuntos
Aprendizado Profundo , Animais , Raios X , Tomografia por Raios X/métodos , Microscopia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Crioeletrônica , Mamíferos
6.
Nanomaterials (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049296

RESUMO

Co-abietate and Cu-abietate complexes were obtained by a low-cost and eco-friendly route. The synthesis process used Pinus elliottii resin and an aqueous solution of CuSO4/CoSO4 at a mild temperature (80 °C) without organic solvents. The obtained complexes are functional pigments for commercial architectural paints with antipathogenic activity. The pigments were characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry (MS), thermogravimetry (TG), near-edge X-ray absorption fine structure (NEXAFS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and colorimetric analysis. In addition, the antibacterial efficiency was evaluated using the minimum inhibitory concentration (MIC) test, and the antiviral tests followed an adaptation of the ISO 21702:2019 guideline. Finally, virus inactivation was measured using the RT-PCR protocol using 10% (w/w) of abietate complex in commercial white paint. The Co-abietate and Cu-abietate showed inactivation of >4 log against SARS-CoV-2 and a MIC value of 4.50 µg·mL-1 against both bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The results suggest that the obtained Co-abietate and Cu-abietate complexes could be applied as pigments in architectural paints for healthcare centers, homes, and public places.

7.
Small Methods ; 7(1): e2201382, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36446642

RESUMO

The combination of near edge X-ray absorption spectroscopy with nanoscale X-ray imaging is a powerful analytical tool for many applications in energy technologies, catalysis, which are critical to combat climate change, as well as microelectronics and life science. Materials from these scientific areas often contain key elements, such as Si, P, S, Y, Zr, Nb, and Mo as well as lanthanides, whose X-ray absorption edges lie in the so-called tender photon energy range 1.5-5.0 keV. Neither conventional grazing incidence grating nor crystal monochromators have high transmission in this energy range, thereby yielding the tender photon energy gap. To close this gap, a monochromator setup based on a multilayer coated blazed plane grating and plane mirror is devised. The measurements show that this novel concept improves the photon flux in the tender X-ray regime by two-orders-of-magnitude enabling previously unattainable laboratory and synchrotron-based studies. This setup is applied to perform nanoscale spectromicroscopy studies. The high photon flux provides sufficient sensitivity to obtain the electronic structure of Mo in platinum-free MoNi4 nanoparticles for electrochemical energy conversion. Additionally, it is shown that the chemical bonding of nano-structures in integrated circuits can be distinguished by the electronic configuration at the Si-K edge.

8.
Univers Access Inf Soc ; : 1-16, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36530861

RESUMO

Communication technologies play an important role in maintaining the grandparent-grandchild (GP-GC) relationship. Based on Media Richness Theory, this study investigates the frequency of use (RQ1) and perceived quality (RQ2) of established media as well as the potential use of selected innovative media (RQ3) in GP-GC relationships with a particular focus on digital media. A cross-sectional online survey and vignette experiment were conducted in February 2021 among N = 286 university students in Germany (mean age 23 years, 57% female) who reported on the direct and mediated communication with their grandparents. In addition to face-to-face interactions, non-digital and digital established media (such as telephone, texting, video conferencing) and innovative digital media, namely augmented reality (AR)-based and social robot-based communication technologies, were covered. Face-to-face and phone communication occurred most frequently in GP-GC relationships: 85% of participants reported them taking place at least a few times per year (RQ1). Non-digital established media were associated with higher perceived communication quality than digital established media (RQ2). Innovative digital media received less favorable quality evaluations than established media. Participants expressed doubts regarding the technology competence of their grandparents, but still met innovative media with high expectations regarding improved communication quality (RQ3). Richer media, such as video conferencing or AR, do not automatically lead to better perceived communication quality, while leaner media, such as letters or text messages, can provide rich communication experiences. More research is needed to fully understand and systematically improve the utility, usability, and joy of use of different digital communication technologies employed in GP-GC relationships.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36141581

RESUMO

BACKGROUND: Loneliness and social isolation in older age are considered major public health concerns and research on technology-based solutions is growing rapidly. This scoping review of reviews aims to summarize the communication technologies (CTs) (review question RQ1), theoretical frameworks (RQ2), study designs (RQ3), and positive effects of technology use (RQ4) present in the research field. METHODS: A comprehensive multi-disciplinary, multi-database literature search was conducted. Identified reviews were analyzed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. A total of N = 28 research reviews that cover 248 primary studies spanning 50 years were included. RESULTS: The majority of the included reviews addressed general internet and computer use (82% each) (RQ1). Of the 28 reviews, only one (4%) worked with a theoretical framework (RQ2) and 26 (93%) covered primary studies with quantitative-experimental designs (RQ3). The positive effects of technology use were shown in 55% of the outcome measures for loneliness and 44% of the outcome measures for social isolation (RQ4). CONCLUSION: While research reviews show that CTs can reduce loneliness and social isolation in older people, causal evidence is limited and insights on innovative technologies such as augmented reality systems are scarce.


Assuntos
Solidão , Isolamento Social , Idoso , Comunicação , Humanos , Saúde Pública , Projetos de Pesquisa
10.
Micron ; 158: 103262, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35378432

RESUMO

The 3D morphology of hierarchically structured electrocatalytic systems is determined based on multi-scale X-ray computed tomography (XCT), and the crystalline structure of electrocatalyst nanoparticles is characterized using transmission electron microscopy (TEM), supported by X-ray diffraction (XRD) and spatially resolved near-edge X-ray absorption fine structure (NEXAFS) studies. The high electrocatalytic efficiency for hydrogen evolution reaction (HER) of a novel transition-metal-based material system - MoNi4 electrocatalysts anchored on MoO2 cuboids aligned on Ni foam (MoNi4/MoO2@Ni) - is based on advantageous crystalline structures and chemical bonding. High-resolution TEM images and selected-area electron diffraction patterns are used to determine the crystalline structures of MoO2 and MoNi4. Multi-scale XCT provides 3D information of the hierarchical morphology of the MoNi4/MoO2@Ni material system nondestructively: Micro-XCT images clearly resolve the Ni foam and the attached needle-like MoO2 micro cuboids. Laboratory nano-XCT shows that the MoO2 micro cuboids with a rectangular cross-section of 0.5 × 1 µm2 and a length of 10-20 µm are vertically arranged on the Ni foam. MoNi4 nanoparticles with a size of 20-100 nm, positioned on single MoO2 cuboids, were imaged using synchrotron radiation nano-XCT. The application of a deep convolutional neural network (CNN) significantly improves the reconstruction quality of the acquired data.

11.
ACS Nano ; 15(9): 14838-14849, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34460234

RESUMO

Directing nanoparticles to the nucleus by attachment of nuclear localization sequences (NLS) is an aim in many applications. Gold nanoparticles modified with two different NLS were studied while crossing barriers of intact cells, including uptake, endosomal escape, and nuclear translocation. By imaging of the nanoparticles and by characterization of their molecular interactions with surface-enhanced Raman scattering (SERS), it is shown that nuclear translocation strongly depends on the particular incubation conditions. After an 1 h of incubation followed by a 24 h chase time, 14 nm gold particles carrying an adenoviral NLS are localized in endosomes, in the cytoplasm, and in the nucleus of fibroblast cells. In contrast, the cells display no nanoparticles in the cytoplasm or nucleus when continuously incubated with the nanoparticles for 24 h. The ultrastructural and spectroscopic data indicate different processing of NLS-functionalized particles in endosomes compared to unmodified particles. NLS-functionalized nanoparticles form larger intraendosomal aggregates than unmodified gold nanoparticles. SERS spectra of cells with NLS-functionalized gold nanoparticles contain bands assigned to DNA and were clearly different from those with unmodified gold nanoparticles. The different processing in the presence of an NLS is influenced by a continuous exposure of the cells to nanoparticles and an ongoing nanoparticle uptake. This is supported by mass-spectrometry-based quantification that indicates enhanced uptake of NLS-functionalized nanoparticles compared to unmodified particles under the same conditions. The results contribute to the optimization of nanoparticle analysis in cells in a variety of applications, e.g., in theranostics, biotechnology, and bioanalytics.


Assuntos
Ouro , Nanopartículas Metálicas , Biotecnologia
12.
Sci Rep ; 11(1): 14555, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267299

RESUMO

The diatom shell is an example of complex siliceous structure which is a suitable model to demonstrate the process of digging into the third dimension using modern visualization techniques. This paper demonstrates importance of a comprehensive multi-length scale approach to the bio-structures/materials with the usage of state-of-the-art imaging techniques. Imaging of diatoms applying visible light, electron and X-ray microscopy provide a deeper insight into the morphology of their frustules.

13.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946192

RESUMO

Gold nanostars are a versatile plasmonic nanomaterial with many applications in bioanalysis. Their interactions with animal cells of three different cell lines are studied here at the molecular and ultrastructural level at an early stage of endolysosomal processing. Using the gold nanostars themselves as substrate for surface-enhanced Raman scattering, their protein corona and the molecules in the endolysosomal environment were characterized. Localization, morphology, and size of the nanostar aggregates in the endolysosomal compartment of the cells were probed by cryo soft-X-ray nanotomography. The processing of the nanostars by macrophages of cell line J774 differed greatly from that in the fibroblast cell line 3T3 and in the epithelial cell line HCT-116, and the structure and composition of the biomolecular corona was found to resemble that of spherical gold nanoparticles in the same cells. Data obtained with gold nanostars of varied morphology indicate that the biomolecular interactions at the surface in vivo are influenced by the spike length, with increased interaction with hydrophobic groups of proteins and lipids for longer spike lengths, and independent of the cell line. The results will support optimized nanostar synthesis and delivery for sensing, imaging, and theranostics.

14.
Sci Rep ; 11(1): 8927, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903617

RESUMO

Mitochondria receive cholesterol from late endosomes and lysosomes (LE/LYSs) or from the plasma membrane for production of oxysterols and steroid hormones. This process depends on the endo-lysosomal sterol transfer protein Niemann Pick C2 (NPC2). Using the intrinsically fluorescent cholesterol analog, cholestatrienol, we directly observe sterol transport to mitochondria in fibroblasts upon treating NPC2 deficient human fibroblasts with NPC2 protein. Soft X-ray tomography reveals the ultrastructure of mitochondria and discloses close contact to endosome-like organelles. Using fluorescence microscopy, we localize endo-lysosomes containing NPC2 relative to mitochondria based on the Euclidian distance transform and use statistical inference to show that about 30% of such LE/LYSs are in contact to mitochondria in human fibroblasts. Using Markov Chain Monte Carlo image simulations, we show that interaction between both organelle types, a defining feature of membrane contact sites (MCSs) can give rise to the observed spatial organelle distribution. We devise a protocol to determine the surface fraction of endo-lysosomes in contact with mitochondria and show that this fraction does not depend on functional NPC1 or NPC2 proteins. Finally, we localize MCSs between LE/LYSs containing NPC2 and mitochondria in time-lapse image sequences and show that they either form transiently or remain stable for tens of seconds. Lasting MCSs between endo-lysosomes containing NPC2 and mitochondria move by slow anomalous sub-diffusion, providing location and time for sterol transport between both organelles. Our quantitative imaging strategy will be of high value for characterizing the dynamics and function of MCSs between various organelles in living cells.


Assuntos
Fibroblastos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Esteróis/metabolismo , Transporte Biológico Ativo , Linhagem Celular , Fibroblastos/citologia , Humanos , Masculino , Microscopia de Fluorescência , Proteína C1 de Niemann-Pick/metabolismo , Proteínas de Transporte Vesicular/metabolismo
15.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499119

RESUMO

Silicon nitride-zirconia-graphene composites with high graphene content (5 wt.% and 30 wt.%) were sintered by gas pressure sintering (GPS). The effect of the multilayer graphene (MLG) content on microstructure and fracture mechanism is investigated by multi-scale and in-situ microscopy. Multi-scale microscopy confirms that the phases disperse evenly in the microstructure without obvious agglomeration. The MLG flakes well dispersed between ceramic matrix grains slow down the phase transformation from α to ß-Si3N4, subsequent needle-like growth of ß-Si3N4 rods and the densification due to the reduction in sintering additives particularly in the case with 30 wt.% MLG. The size distribution of Si3N4 phase shifts towards a larger size range with the increase in graphene content from 5 to 30 wt.%, while a higher graphene content (30 wt.%) hinders the growth of the ZrO2 phase. The composite with 30 wt.% MLG has a porosity of 47%, the one with 5 wt.% exhibits a porosity of approximately 30%. Both Si3N4/MLG composites show potential resistance to contact or indentation damage. Crack initiation and propagation, densification of the porous microstructure, and shift of ceramic phases are observed using in-situ transmission electron microscopy. The crack propagates through the ceramic/MLG interface and through both the ceramic and the non-ceramic components in the composite with low graphene content. However, the crack prefers to bypass ceramic phases in the composite with 30 wt.% MLG.

16.
Chem Phys Lipids ; 235: 105047, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422548

RESUMO

The Niemann-Pick C2 protein (NPC2) is a sterol transfer protein in the lumen of late endosomes and lysosomes (LE/LYSs). Absence of functional NPC2 leads to endo-lysosomal buildup of cholesterol and other lipids. How NPC2's known capacity to transport cholesterol between model membranes is linked to its function in living cells is not known. Using quantitative live-cell imaging combined with modeling of the efflux kinetics, we show that NPC2-deficient human fibroblasts can export the cholesterol analog dehydroergosterol (DHE) from LE/LYSs. Internalized NPC2 accelerated sterol efflux extensively, accompanied by reallocation of LE/LYSs containing fluorescent NPC2 and DHE to the cell periphery. Using quantitative fluorescence loss in photobleaching of TopFluor-cholesterol (TF-Chol), we estimate a residence time for a rapidly exchanging sterol pool in LE/LYSs localized in close proximity to the plasma membrane (PM), of less than one min and observed non-vesicular sterol exchange between LE/LYSs and the PM. Excess sterol was released from the PM by shedding of cholesterol-rich vesicles. The ultrastructure of such vesicles was analyzed by combined fluorescence and cryo soft X-ray tomography (SXT), revealing that they can contain lysosomal cargo and intraluminal vesicles. Treating cells with apoprotein A1 and with nuclear receptor liver X-receptor (LXR) agonists to upregulate expression of ABC transporters enhanced cholesterol efflux from the PM, at least partly by accelerating vesicle release. We conclude that NPC2 inside LE/LYSs facilitates non-vesicular sterol exchange with the PM for subsequent sterol efflux to acceptor proteins and for shedding of sterol-rich vesicles from the cell surface.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células Cultivadas , Humanos , Lisossomos/metabolismo
17.
Nanoscale ; 13(2): 968-979, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33367430

RESUMO

Gold nanostars are important nanoscopic tools in biophotonics and theranostics. To understand the fate of such nanostructures in the endolysosomal system of living cells as an important processing route in biotechnological approaches, un-labelled, non-targeted gold nanostars synthesized using HEPES buffer were studied in two cell lines. The uptake of the gold nanostructures leads to cell line-dependent intra-endolysosomal agglomeration, which results in a greater enhancement of the local optical fields than those around individual nanostars and near aggregates of spherical gold nanoparticles of the same size. As demonstrated by non-resonant surface-enhanced Raman scattering (SERS) spectra in the presence and absence of aggregation, the spectroscopic signals of molecules are of very similar strength over a wide range of concentrations, which is ideal for label-free vibrational characterization of cells and other complex environments. In 3T3 and HCT-116 cells, SERS data were analyzed together with the properties of the intracellular nanostar agglomerates. Vibrational spectra indicate that the processing of nanostars by cells and their interaction with the surrounding endolysosomal compartment is connected to their morphological properties through differences in the structure and interactions in their intracellular protein corona. Specifically, different intracellular processing was found to result from a different extent of hydrophobic interactions at the pristine gold surface, which varies for nanostars of different spike lengths. The sensitive optical monitoring of surroundings of nanostars and their intracellular processing makes them a very useful tool for optical bionanosensing and therapy.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro , Análise Espectral Raman
18.
Nucleic Acids Res ; 49(4): e23, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33313868

RESUMO

Methods for the detection of m6A by RNA-Seq technologies are increasingly sought after. We here present NOseq, a method to detect m6A residues in defined amplicons by virtue of their resistance to chemical deamination, effected by nitrous acid. Partial deamination in NOseq affects all exocyclic amino groups present in nucleobases and thus also changes sequence information. The method uses a mapping algorithm specifically adapted to the sequence degeneration caused by deamination events. Thus, m6A sites with partial modification levels of ∼50% were detected in defined amplicons, and this threshold can be lowered to ∼10% by combination with m6A immunoprecipitation. NOseq faithfully detected known m6A sites in human rRNA, and the long non-coding RNA MALAT1, and positively validated several m6A candidate sites, drawn from miCLIP data with an m6A antibody, in the transcriptome of Drosophila melanogaster. Conceptually related to bisulfite sequencing, NOseq presents a novel amplicon-based sequencing approach for the validation of m6A sites in defined sequences.


Assuntos
Adenosina/análogos & derivados , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/química , Análise de Sequência de RNA/métodos , Adenosina/análise , Algoritmos , Animais , Cromatografia Líquida , Desaminação , Drosophila melanogaster/genética , Células HEK293 , Células HeLa , Humanos , RNA Longo não Codificante/química , RNA Mensageiro/química , RNA Ribossômico 18S/química , Alinhamento de Sequência , Espectrometria de Massas em Tandem
19.
Nanoscale ; 12(33): 17450-17461, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32856032

RESUMO

Understanding the formation of the intracellular protein corona of nanoparticles is essential for a wide range of bio- and nanomedical applications. The innermost layer of the protein corona, the hard corona, directly interacts with the nanoparticle surface, and by shielding the surface, it has a deterministic effect on the intracellular processing of the nanoparticle. Here, we combine a direct qualitative analysis of the hard corona composition of gold nanoparticles with a detailed structural characterization of the molecules in their interaction with the nanoparticle surface and relate both to the effects they have on the ultrastructure of living cells and the processing of the gold nanoparticles. Cells from the cell lines HCT-116 and A549 were incubated with 30 nm citrate-stabilized gold nanoparticles and with their aggregates in different culture media. The combined results of mass spectrometry based proteomics, cryo soft X-ray nanotomography and surface-enhanced Raman scattering experiments together revealed different uptake mechanisms in the two cell lines and distinct levels of induced cellular stress when incubation conditions were varied. The data indicate that the different incubation conditions lead to changes in the nanoparticle processing via different protein-nanoparticle interfacial interactions. Specifically, they suggest that the protein-nanoparticle surface interactions depend mainly on the surface properties of the gold nanoparticles, that is, the ζ-potential and the resulting changes in the hydrophilicity of the nanoparticle surface, and are largely independent of the cell line, the uptake mechanism and intracellular processing, or the extent of the induced cellular stress.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Ouro , Nanopartículas Metálicas/toxicidade , Análise Espectral Raman , Propriedades de Superfície
20.
Genes (Basel) ; 11(8)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824672

RESUMO

Reverse transcription of RNA templates containing modified ribonucleosides transfers modification-related information as misincorporations, arrest or nucleotide skipping events to the newly synthesized cDNA strand. The frequency and proportion of these events, merged from all sequenced cDNAs, yield a so-called RT signature, characteristic for the respective RNA modification and reverse transcriptase (RT). While known for DNA polymerases in so-called error-prone PCR, testing of four different RTs by replacing Mg2+ with Mn2+ in reaction buffer revealed the immense influence of manganese chloride on derived RT signatures, with arrest rates on m1A positions dropping from 82% down to 24%. Additionally, we observed a vast increase in nucleotide skipping events, with single positions rising from 4% to 49%, thus implying an enhanced read-through capability as an effect of Mn2+ on the reverse transcriptase, by promoting nucleotide skipping over synthesis abortion. While modifications such as m1A, m22G, m1G and m3C showed a clear influence of manganese ions on their RT signature, this effect was individual to the polymerase used. In summary, the results imply a supporting effect of Mn2+ on reverse transcription, thus overcoming blockades in the Watson-Crick face of modified ribonucleosides and improving both read-through rate and signal intensity in RT signature analysis.


Assuntos
Íons/metabolismo , Manganês/metabolismo , Transcrição Reversa , Pareamento de Bases , Íons/química , Manganês/química , RNA/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/metabolismo , Ribonucleosídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...